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Predictive modeling in health care: statistical approaches to identifying
patients at high risk (more likely) for negative outcomes

Diagnosis & Utilization




Predictive modeling is widely applied...

POPULATION HEALTH

By Sabine L Vuk, Erik K Mayer, and Ara Darz

ANALYSIS & COMMENTARY

Patient Segmentation Analysis
Offers Significant Benefits For
Integrated Care And Support

ABSTRACT Integrated care aims to organize care around the patient
instead of the provider. It is therefore crucial to understand differences
across patients and their needs. Segmentation analysis that uses big data
can help divide a patient population into distinct groups, which can then
be targeted with care modds and intervention programs tailored to thdr
needs. In this article we explore the potential applications of patient
segmentation in integrated care. We propose a framework for population
strategies in integrated care—whole populations, subpopulations, and
high-risk populations—and show how patient segmentation can support
these strategies. Through international case examples, we illustrate
practical considerations such as choosing a segmentation logic, accessing
data, and tailoring care models. Important issues for policy makers to

consider are trade-offs between simplicity and precision, trade-offs

between customized and off-the-shelf solutions, and the availability of
linked data sets. We condude that segmentation can provide many
benefits to integrated care, and we encourage policy makers to support

its use.
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Risk Prediction Models for Hospital Readmission

A Systematic Review
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tion o trigger a transitional care inter-
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care & Medicaid Services (CMS) re-
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a publicly reported metric and has plans

zabon (c stabstic range: 0.56-0.72), andSm.ldbcuseddhmp'hldsdmp(csh-
tishic - 0.68-0.83). Six shudh t models in the same population
and 2 of found that funcional and socal variables improved moded discrimina-
tion. Although most models incarporated variables for medical and use
of prior medical services, few examined variables associated with overall health and
funclion, finess severity, or sodal determinants of health.

Conclusions Most current readmission risk prediction modelks that were designed
fmeﬂhucanparﬂfveofck-dpurpmpafampoaiy N&mghmushn%
tings such models may prove wseful, efforts to imp e are needed
as use becomes more widespread.
JAMA. 2071306011688 -165¢€

Waw A= oo

‘&IMVAMH P Medane, Vanderbit Unc-nl Nudnille, Terwes-
g=n (D K soe (Drx Salartes, Theohald, and Kepabes).
d("-dh-nillduulonmmd m Devan Karnagars, MD MCR,




Limitations of current predictive modeling
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e Limited to EHR or claims data Y
e Social determinants often absent e Focus on “too late” outcomes
* Often single-site data (reactive not proactive)

 Don’t provide insights into what
services patients should get



Objective 1: Evaluate predictive models that use combinations of clinical,

socioeconomic, and public health data
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Framework for organizing the factors included in risk identification tool

The only data included ECONOMIC & SOCIA| s \\/hat We are adding
. . opportunities & resources
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“Social Determinants of Health Model” by Braveman et al (2011) Annu. Rev. Public Health, 32:381-398



Objective 2: Contribution of these data on the novel outcome of referrals
to social services
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To be responsive to new payment strategies, health care organizations
in the US are beginning to offer these non-medical services.

SOCIAL
WORKERS
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CHANGE THE WORLD.




Objective 1:
Evaluate predictive models that use combinations of clinical,
socioeconomic, and public health data.

Objective 2:
Contribution of these data on the novel outcome of referrals to social
services.



Approach

Compare the performance of risk prediction models with:
1) clinical data only

2) clinical data with community-level socioeconomic
& public health indicators



Setting & sample

Sample demographics

Demographics

* Eskenazi Health outpatient

clinics Age (mean, sd) ?13596)
— Indianapolis |-  Male gender 35.1
safety-net provider Race / ethnicity
(for medical indigent) White, non-Hispanic 25.2
— urban population African American, non-Hispanic 37.2
— all social services offered HiSpanic 19.5
on a co-located basis DUEE/ R
(no referrals to other Hypertension 38.7
organizations) AGUITTE Uiz
) Cancer 7.6
e 84,317 adult patients COPD S
— atleast 1 outpatient visit Depression 19.0
between 2011-2016 Diabetes 20.3
Substance abuse 15.1

Tobacco use 21.3




Data & measures (outcome)

Referral to social services
— Social work
— Dietitian
— Mental health
— All other services (due to low frequency)
Data sources
— Eskenazi EHR billing and encounter data
— scheduling system data (including kept, missed, & cancelled appointments)
— unstructured EHR orders and notes



Data & measures (predictors)

Economic & social
opportunities & resources

Living & working conditions
in homes & communities
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“Social Determinants of Health Model” by Braveman et al (2011) Annu. Rev. Public Health, 32:381-398



Data & measures (predictors)

* Diagnoses
*  Asthma
e  Coronary artery disease
*  Chronic kidney disease

*  Congestive heart failure
e COPD

e Stroke / cerebrovascular accident
e Depression

* Diabetes
* Hypertension .
* Ischemic vascular disease ° Smoklng

*  Obesity / e Substance abuse
*  Pregnancy

e ED visits (humber)
* Inpatient admissions y Personal
* PCP visits I behavior

. |
* Mentalillness

“Social Determinants of Health Model” by Braveman et al (2011) Annu. Rev. Public Health, 32:381-398



INPC

¢ Indiana Network for Patient Care

* US’ oldest HIE
 Started at Regenstrief Institute in 1995

* One of the nation’s largest

* >80 hospitals’” medical records
17.2 million individual patients
4.6 billion clinical observations
165 million text reports

Over 68% of Indiana population captured in
2014

* Datainclude:
* admission and discharge
* lab reports
* Microbiology
* Pathology
* Radiology
* Cardiology
* EKG data

INPCR Patient Prevalance by County - 2015

Prevalence
.<1%
- 1.0%4.99%
| 5.0%9.99%
110.0%-19.99%
20.0%-39.99%
40.0%-59.99%
60.0%-74.99%
75.0%-89.99%
90.0%-100.0%




Data & measures (predictors)

* Smoking prevalence

* Perceived safety

* Mortality rates

* Infant mortality rates

* Maternal smoking

* Overweight / obesity
prevalence

* Walkability

Economic & social
opportunities & resources

Living & working conditions
in homes & communities

) 1
Medical I Personal

care 1 behavior
I

From survey or census data and linked by geolocation.

Employment rates

Tax delinquent properties
Crime indices

Education rates

Voter participation
Income

“Social Determinants of Health Model” by Braveman et al (2011) Annu. Rev. Public Health, 32:381-398



Framework for organizing the factors

Social Determinants of Health

Economic Nenghborh.ood COMHMNItY Health Care
Stabilit and Physical and Social Svstem
y Environment Context 4
Literacy Hunger Social Health
integration coverage
Language Access to
healthy Support Provider
Early childhood . I
options stems availabili
education P td R/
Community Provider
Voca.tl.onal engagement linguistic and
el L cultural
Higher Discrimination competency
education

Quality of care

kff.org/disparities-policy/issue-brief/beyond-health-care-the-role-of-social-determinants-in-promoting-health-and-health-equity/



Analytic approach: performance of prediction models with novel data

Y o Random forest classification algorithm
] utcomes of
N interest
Diagnosis,
demographic
and encounter
data
N~ Clinical and master data
\ vectors for each following
— :g § service, Random Forrest S
Socio- 5| Datapre- | ¢ @ ; Qny Services : based decision ®
. ‘ ) . Mental Health services s
economic data processing | g o 3. Social work services models for each I
R — a g. 4. Dietitian services data vector @
/"’___“\/ 5. Other miscellaneous
e services
Public health /
data / /
—
Model each outcome twice.
1) Clinical data only (41 variables)

2) Clinical plus socioeconomic &

Split samples for training & testin
public health (48 variables) P!l P ining ing



Prevalence of social service referral need

Type of service

Any service

Mental health

Other services




I”

Prediction for social services referrals was in the “useful” range.

Area under the ROC curve values for each decision model

Any referral 0.745
Mental health 0.785

Other referral O 711

Consistent with performance of models on:
* Mortality

* Readmissions

* Disease development

* Care coordination need



Socioeconomic & public health data did not contribute significantly.

Area under the ROC curve values for each decision model

& public health

0.745 0.741
0.785 0.778
Socialwork [} 0.714
Dietitian  [VRZE 0.730
0.711 0.708



Socioeconomic & public health data did not contribute significantly.

Percentage (%) Need of any referral
75
Clinical data
72.5 vector model
Master data
vector model

70
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Limitations

Socioeconomic measures at aggregate level
— small geographic area, but still aggregate
— limited geographic variation because only within a single urban area
— individual level measures generally unavailable from EHRs
* High need, vulnerable population
— limited generalizability
— probably lots of unmet need
e All services were co-located with primary care
— May not apply to referrals to outside services / other organizations

* No assessment whether or not the referral was appropriate or
appointment was kept



Predictive models for referrals to social services are currently live.

Before clinics open

——————— [ SharePoint

|
ESKENAZI
Any referral - Any referral - Mental health - Mental health - Dietitian - Dietitian - Sodial Work - Sodal Work -
MRN Name provider DOB need category probability need category  probability need category probability need category probability
p— 1A B C Low risk 0.70 Rising risk 0.50 Low risk 0.40 Rising risk 0.30
_— 2 A B C Low risk 0.60 Risin 0.40 Low risk 0.20 Low risk 0.10
g 3A B C Rising risk 0.90 Low risk 0.20 Low risk 0.50 Rising risk 0.40
5:00 AM A 4A B C Low risk 0.60 Low risk 0.20 Low risk 0.40 Rising risk 0.20
5A B C Low risk 0.50 Low risk Low risk 030 Low risk 0.00
- — 6 A B C Rising risk 0.80 Low risk Low risk 0.40 High risk 0.70
— TA B C
8 A B C
9 A B C LOW TISK uou LOW TISK 1) LOW TISK iy LOW TISK LAT T
10 A B (o Low risk 0.40 Rising risk 0.67 Low risk 0.50 Rising risk 0.20

\ )
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Impact of predicted models on referral rates currently being evaluated.

. 3 clinic locations live
Baseline
6 _____
. Next 3 clinic locations live
Baseline
6 _________________
A Last 3 clinic locations live
aseline
< ______________________________

June July August September I October November December January




Using predictive modeling to identify patients who need social services.

Need of Any referral

| e Indications that predictive modeling for social
. services may be useful

— models leveraged EHR and HIE data

— performance could be improved, but
consistent with literature

* Socioeconomic & public health measures
o (at the aggregate level) did not improve model
bw performance

Sensitiv ity Spedificity Accuracy PPV

Joshua R Vest, PhD, MPH

IIJ Regenstrief joshvest@iu.edu
Institute
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