
Using the National Longitudinal Study of 
Adolescent to Adult Health (Add 
Health), we built separate models for 
each outcome using logistic regression 
and survey weights. 

Sample was split for model building and 
validation. 

Candidate academic variables were 
identified based on the literature and 
routine availability from school districts.

Pseudo R-squared in weighted models 
were used to select significant 
interactions and squared terms for 
inclusion. 

Area Under the Curve (AUC), Brier 
Score and Calibration Slope used to 
validate. 
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• Many adolescents with 
behavioral health needs, 
such as depression and 
substance abuse, fail to seek 
early treatment, when their 
conditions might be more 
easily managed

• Academic performance, (grades, 
test scores, attendance, and 
educational attainment) is 
associated with adolescent 
behavioral health outcomes.1,2,3

• Academic data is regularly 
collected and tracked and nearly 
all adolescents

• However, no studies test 
whether academic data 
predict whether students 
are at risk for behavioral 
health needs

• Develop a risk-indicator tool to 
identify students with high risk for 
depression, substance use and 
comorbidity using nationally 
representative data

• Test the sensitivity, specificity and 
predictive value of the tool to 
identify each behavioral health 
outcome in a validation dataset 

Descriptive Statistics
For each outcome, academic 
predictors added value over and 
above demographic information.
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Next Steps

1. Validate and create risk index 
using validation sample

2. Validate externally using Los 
Angeles-specific student datasets

Dependent Variables 
(each with own model)

• Depression (CES-D)
• Alcohol misuse (>1/month) 
• Marijuana misuse (>1/month) 
• Other drug use (>1/month) 
• Any substance misuse 
• Comorbidity (Depression and 

substance misuse)
Predictors: Demographics

• Age
• Race
• Ethnicity
• Sex
• Free-or-Reduced Price Lunch Status

Predictors: Academic
• Current GPA
• Change from previous-year GPA to 

current GPA
• Excused absences (count)
• Unexcused absences (count)
• Ever expelled
• Ever suspended

Variable Name %
Female 49.8
Primary race

White 71.9
African American 16.7
Native American 1.0
Asian 4.5
Other 5.9

Latino ethnicity 10.6
Free-or-Reduced-Price lunch status

None 54.6
Reduced 7.9
Free 14.7
Missing 22.8

Grade in school
9 1.7
10 27.7
11 27.0
12 43.2

Ever suspended 14.2
Ever expelled 1.9
Alcohol misuse 20.6
Marijuana misuse 13.4
Other drug Use 4.8
Any substance misuse 36.2
Depression 16.1
Comorbidity 7.6

Mean
Current GPA 2.62
Proportion of courses with GPA decrease from 
prior Year

0.36

GPA change from prior year .003
Mean excused absences 5.98
Mean unexcused absences 2.08

Depression
AUC=0.67

Alcohol Misuse
AUC=0.70

Marijuana Misuse
AUC=.75

Other Drug Use
AUC=.79

Any misuse
AUC=.71

Comorbid
AUC=.73

ROC Curves for Full Models

Measures

• Academic data can be used to 
predict behavioral health risk

• If validated, this presents new 
possibilities for population health 
management.

• Models that include interactions 
between demographics and 
academic variables achieved higher 
AUCs, suggesting the need for a 
“personalized” approach.

• ROC curves suggest that for some 
outcomes, the full models are only 
moderately predictive.

• Model performance improves as 
outcome severity increases
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