How Multi-Sector Community Networks Are Shaping COVID-19 Pandemic Trajectories and Outcomes Across the U.S.

Strategies to Achieve Alignment, Collaboration, and Synergy Across Delivery and Financing Systems

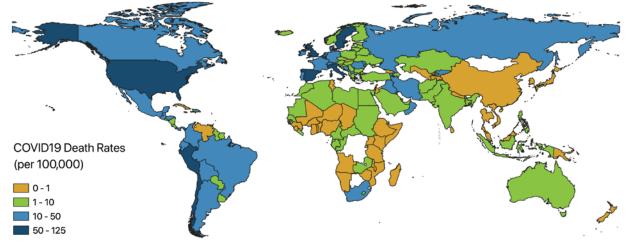
Deena N. Brosi, MPH

colorado school of public health

Welcome: Chris Lyttle, JD

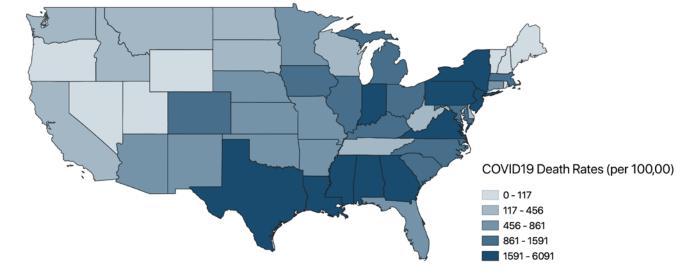
Deputy Director for Systems for Action

Presenters: Deena Brosi, MPH


Colorado School of Public Health Systems for Action Intramural Research Team

Q&A: Chris Lyttle, JD

Introduction: COVID-19 Pandemic


- January 20, 2020 was the first documented case of the novel coronavirus (SARS-CoV-2) in the United States.
- Over **5 million** documented cases and over **170,00** reported dead in the U.S.
- The United States has the highest reported death rate among developed nations.

Mortality Analyses. Johns Hopkins Coronavirus Resource Center. Accessed August 17, 2020. https://coronavirus.jhu.edu/data/mortality

Introduction: COVID-19 Pandemic

- The U.S. is also experiencing disparities in cases and deaths across cities and states.
- Policies around COVID-19 safe practices vary by state and localities.

CSSEGISandData. CSSEGISandData/COVID-19; 2020. Accessed August 17, 2020. https://github.com/CSSEGISandData/COVID-19

Introduction: NALSYS

- The National Longitudinal Survey of Public Health Systems (NALSYS) follows a national cohort of U.S. communities over time
- Captures information about:
 - Implementation of guideline-recommended public health activities
 - Network of organizations that participate in each activity (multi-sector)
- Completed by the designated local public health official in each community
- Used to construct composite measures of public health system capabilities and network strength

- Do communities with stronger public health systems experience fewer COVID-19 deaths?
- Which attributes of public health systems are associated with the COVID-19 mortality trajectory:
 - The scope of guideline-recommended public health activities implemented by the system
 - The network density of organizations that participate in these activities

Methods: Sample

S4A Systems for Action

- The 2018 wave (N = 725) of the NALSYS consisted of:
 - A national sample of metropolitan communities with at least 100,000 residents (N = 296).
 - A national, stratified sample of rural communities with less than 100,000 residents (N = 254).
 - A statewide sample of communities in 4 states (OH, KY, WA, OR) (N = 173).
- Response rate for the 2018 wave was 71%.
- Reduced models excluded the 4-state samples.

Methods: Measures

- The main covariate of interest is the System Composite Score from the NALSYS dataset.
 - Score is calculated using a combination of activity scope and network density variables using cluster analysis.
 - The three natural categories for this variable are: Comprehensive, Conventional and Limited
- Comprehensive public health systems implement the most public health activities and have the largest networks of organizations that participate those activities.

Methods: Data

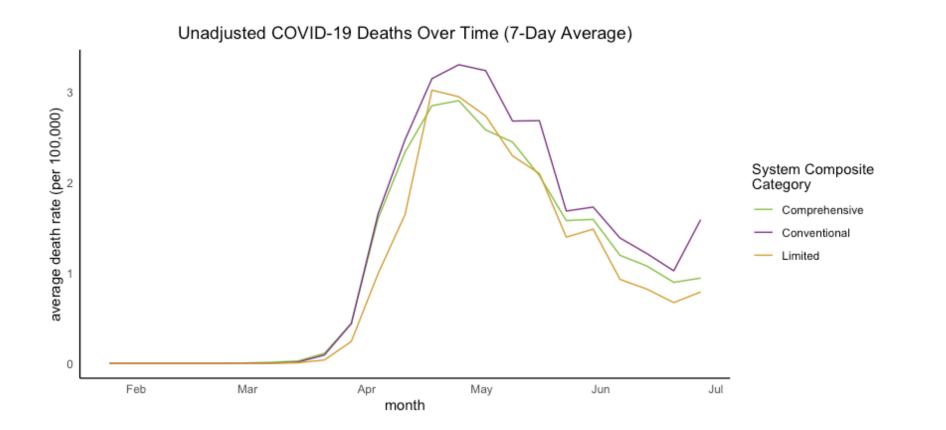
- NALSYS.
- John Hopkins's Center for Systems Science and Engineering.
- Services Administration's Area Health Resource File (AHRF).
- The Atlantic's COVID Tracking Project.
- Center for Disease Control's (CDC) Compressed Mortality File.
- New York Times 2016 Presidential Election Data

- Due to the higher than expected number of counties with zero COVID-19 deaths, we employed a two-part model analysis.
 - 1st Part: Models the probability of a county having at least one COVID-19 death versus no COVID-19 deaths using a logistic regression.

$$log(\frac{P[COVID-19>0]_i}{1 - P[COVID-19>0]_i}) = \beta_0 + \beta_1 \text{System Composite Score}_i + X'\beta + \epsilon_i$$

 2nd Part: Estimates COVID-19 death rates among counties with at least one death using a log transformation to approximate a normal distribution.

 $(\text{COVID}-19_i|\text{COVID}-19_i > 0) = e^{\beta_0 + \beta_1} \text{System Composite Score}_i + x' \beta_i + \epsilon_i$



Results: County Characteristics

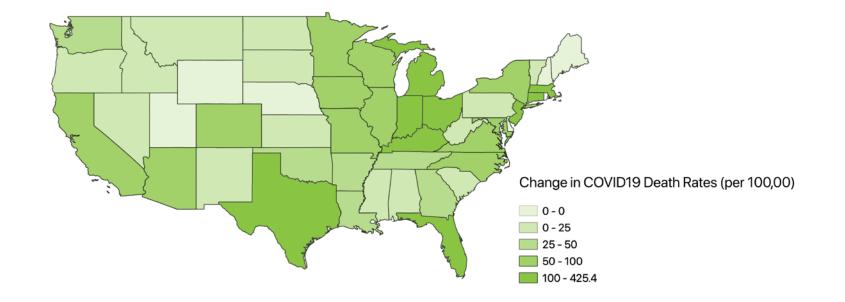
	Comprehensive (n = 237)	Conventional (n = 98)	Limited (n = 390)	p-value		
County Characteristics						
COVID-19 Deaths (per 100,000)	18.8	25.3	22.9	0.356		
COVID-19 Deaths > 0 (%)	74.9	67.9	66.5	0.114		
Household Size	2.49	2.48	2.48	0.859		
Rurality (%)	51.3	47.4	65.7	< 0.001***		
Population (10,000)	30.0	22.5	15.9	0.0279*		
Average Distance Traveled to Work (mins)	24.0	24.7	24.7	0.300		
Public Transportation Use (%)	0.66	0.66	0.60	0.889		
Population Density (per sq. mile)	489.0	369.2	282.7	0.173		
Male (%)	49.7	49.8	49.9	0.524		
Population ≥ 65 Years Old (%)	17.7	18.3	18.3	0.136		
Uninsured (%)	8.33	8.57	9.11	0.064		
Non-white (%)	17.2	16.2	15.3	0.350		
Unemployed (%)	4.79	5.08	4.69	0.155		
4-year College Degree (%)	0.35	0.27	0.20	0.166		
Income per capita (\$10,000)	4.36	4.38	4.17	0.179		
Nursing Home (per 100,000)	682.9	648.3	746.2	0.028*		
COVID-19 Risk Deaths (per 100,000)	605.2	647.4	654.4	0.0031**		
Voted for Trump in 2016 (%)	83.0	83.3	85.0	0.776		
Republican Governor (%)	47.4	37.7	60.1	<0.001***		
State COVID-19 Tests (per 100,000)	9,174.6	9,055.2	8,778.4	0.250		
Weighted County Averages Across Public Health Department Composite System Rating						

Results: County Characteristics

 Composite system rating was significant in the GLM, but not the logit.

	Logit ^a (n = 725)	GLM ^b (n = 553)			
Variables	Probability (S.E.)	Linear (S.E.)			
Composite System Rating					
Conventional	-0.023 (0.078)	14.9*** (3.94)			
Limited	-0.026 (0.057)	10.5*** (2.33)			
Household Size	0.41 (0.25)	-3.60 (9.98)			
Rurality	0.41 (0.057)	-6.42 (5.35)			
Population (10,000)	1.71e-6 (1.39e-6)	-2.62e-6* (1.19e-6)			
Average Distance Traveled to Work (mins)	0.0011 (0.0059)	1.89** (0.59)			
Public Transportation Use (%)	0.11 (0.13)	-3.16*** (0.81)			
Population Density (per sq. mile)	0.0021** (0.00074)	0.0089*** (0.0019)			
Male (%)	-0.014 (0.0091)	1.17 (1.52)			
Population ≥ 65 Years Old (%)	0.0088 (0.0086)	0.77 (0.49)			
Uninsured (%)	0.00082 (0.0072)	-0.59 (0.49)			
Non-white (%)	0.0024 (0.0027)	-0.067 (0.15)			
Unemployed (%)	-0.044** (0.017)	5.06* (2.47)			
4-year College Degree (%)	-0.099 (0.096)	1.67** (0.53)			
Income per capita (\$10,000)	-2.14e-6 (2.51e-6)	3.36e-4*** (7.62e-5)			
Nursing Home (per 100,000)	3.76e-5 (5.46e-5)	0.029*** (0.0046)			
COVID-19 Risk Deaths (per 100,000)	1.74e-6 (2.12e-4)	-0.061*** (0.016)			
Voted for Trump in 2016	0.0064 (0.11)	-21.5** (6.29)			
Republican Governor	0.11* (0.047)	6.80* (3.17)			
State COVID-19 Tests (per 100,000)	1.17e-5 (7.73e-6)	0.0025*** (0.00037)			
Weighted Two-part Model Estimates for COVID19 Death Rate per 100,000 People					

Results: Reduced and Full Models


- Compared with Comprehensive health systems, there were 13.1 more COVID-19 deaths per 100,000 people in counties with Conventional public health systems and 9.12 more COVID-19 deaths per 100,000 people in counties with Limited public health systems.
- Reduced sample and covariate models also showed a significant association between health system composite score and COVID-19 death rates.

Variables	Reduced Sample & Covariate Model (N = 484)	Reduced Covariate Model (N = 725)	Reduced Sample Model (N = 484)	Full Model (N = 725)		
Composite System Rating						
Conventional	14.7** (4.46)	12.6** (4.45)	15.6*** (4.30)	13.1*** (3.63)		
Limited	11.6** (3.46)	9.14** (3.20)	11.4*** (2.79)	9.12*** (2.18)		
Linear Estimates of COVID-19 Death Rates (per 100,000) in Comparison to Comprehensive Public Health Systems						

Results

S4A Systems for Action

• Many states could have avoided COVID-19 death rates if they had Comprehensive health system composite scores.

- There is a **negative correlation** between COVID-19 death rates and local public health system capabilities.
- Anecdotal reports suggests that many public health departments lacked the resources and staffing necessary to address the pandemic.
- Local public health departments with more resources and stronger partners were able to put more efforts towards COVID-19 response.

- Local public health officials as respondents may not have the full knowledge of public health system capabilities in their jurisdiction.
 - Especially if the activities are occurring outside of the local public health department purview.
- Only 71% of NALSYS sample responded, which if influenced by unobserved variable could confound results.
- COVID-19 deaths were under-reported in beginning months (Jan-Mar).
- This analysis is cross-sectional and there may still be additional unobserved confounding.

Discussion: Future Steps

- This analysis looked at the first wave of COVID-19 in the United States (January 2020 – June 2020), but cases and deaths are continuing to rise as counties and states re-opened in July.
- More research needs to be conducted on public health system capabilities and COVID-19 deaths.
- Interviews from public health agencies would supplement our findings and help explain why communities with low composite system scores are related to more deaths in the county.

Questions?

www.systemsforaction.org

If you would like to receive a **certificate of completion** for today's ResProg webinar, please complete the survey at the end of the session.

One will be emailed to you.

September 2nd | 12pm ET

Testing the Impact of a Referral Program to Link Probationers to Primary Care

Daniel J. O'Connell, PhD and Christy Visher, PhD, University of Delaware

Sep 16th | 12pm ET

Addressing the Health and Social Needs of Justice-Involved Young Adults

George Naufal, PhD and Emily Naiser, PhD, Texas A&M University

Systems for Action is a National Program Office of the Robert Wood Johnson Foundation and a collaborative effort of the Colorado School of Public Health, administered by the University of Colorado Anschutz Medical Campus in Aurora, CO.

colorado school of public health