University of Kentucky

From the SelectedWorks of Glen Mays

Summer June 24, 2018

Using Network Analysis to Explore the Implementation & Impact of Population Health Strategies

Glen P. Mays, University of Kentucky

Available at: https://works.bepress.com/glen_mays/333/

Using Network Analysis to Explore the Implementation & Impact of Population Health Strategies

Glen Mays, PhD, MPH University of Kentucky

glen.mays@uky.edu

systemsforaction.org

AcademyHealth Annual Research Meeting • Seattle, WA • 24 June 2018

Systems for Action National Coordinating Center Systems and Services Research to Build a Culture of Health

Systems and Services Research

Acknowledgements

- Funded by the Robert Wood Johnson Foundation through the Systems for Action National Coordinating Center
- Collaborators include Cezar Mamaril, Rachel Hogg, Rick Ingram

Using networks for population health improvement strategies

- Designed to achieve large-scale health improvement: neighborhood, city/county, region
- Target fundamental and often multiple determinants of health
- Mobilize the collective actions of multiple stakeholders in government & private sector

Mays GP. Governmental public health and the economics of adaptation to population health strategies. IOM Population Health Roundtable Discussion Paper. February 2014.

Using networks to overcome collective action problems

- Concentrated costs & diffuse benefits
- Time lags: costs vs. improvements
- Uncertainties about what works
- Asymmetry in information
- Difficulties measuring progress

- Weak and variable institutions & infrastructure
- Imbalance: resources vs. needs
- Stability & sustainability of funding

Ostrom E. 1994

Research questions of interest

- Which organizations engage in implementation of population health activities in local communities?
- How and why do these contributions change over time?
- How do patterns of interaction influence volume, scope, and effectiveness of pop health activities?
 - Complementarities/Synergies
 - Substitutions
 - Crowd-out

Data: networks for population health

National Longitudinal Survey of Public Health Systems

- Cohort of 360 communities with at least 100,000 residents
- Followed over time: 1998, 2006, 2012, 2014**, 2016, 2018
- Local public health officials report:
 - Scope: availability of 20 recommended population health activities
 - Network: types of organizations contributing to each activity
 - Perceived effectiveness of each activity in meeting community needs

** Stratified sample of 500 communities with <100,000 residents added beginning in 2014 wave

Measures: recommended capabilities that support implementation of multi-sector health initiatives

National Academy of Medicine: *For the Public's Health: Investing in a Healthier Future.* Washington, DC: National Academies Press; 2012.

Network analytic approach

Two-mode networks (organization types X activities) transformed to one-mode networks with tie strength indicated by number of activities jointly produced

Organization Type/Sector	Activities							
	1	2	3	4	5	6	7	20
Local public health agency	Х	Х		Х		Х		
State public health agency		Х	Х		Х			Х
Hospitals		Х	Х	Х			Х	
Physician practices					Х		Х	
CHCs	Х		Х		Х			
Insurers					Х	Х		Х
Employers								
Social service organizations		Х		Х			Х	
Schools			Х		Х	Х		

Data linkages expand analytic possibilities

- Area Health Resource File: health resources, demographics, socioeconomic status, insurance coverage
- NACCHO Profile data: public health agency institutional and financial characteristics
- CMS Impact File & Cost Report: hospital ownership, market share, uncompensated care
- **Dartmouth Atlas**: Area-level medical spending (Medicare)
- CDC Compressed Mortality File: Cause-specific death rates by county
- Equality of Opportunity Project (Chetty): local estimates of life expectancy by income
- National Health Interview Survey: individual-level health
- **HCUP**: area-level hospital and ED use, readmissions

Cluster and network analysis to identify "system capital"

Cluster analysis is used to classify communities into one of 7 categories of *population health system capital* based on:

- Scope of activities contributed by each type of organization
- Density of connections among organizations jointly producing activities
- Degree centrality of organizational contributors

Mays GP et al. Understanding the organization of public health delivery systems: an empirical typology. *Milbank Q.* 2010;88(1):81–111.

Average network structure in 2016

Node size = degree centrality Line size = % activities jointly contributed (tie strength)

Mays GP et al. Health Affairs 2016

Variation and change in prevalence of comprehensive system capital

Variation in network structure in 2016

Organizational contributions to population health activities

			Percent
Type of Organization	<u>1998</u>	<u>2016</u>	<u>Change</u>
Local public health agencies	60.7%	67.5%	11.1%
Other local government agencies	31.8%	33.2%	4.4%
State public health agencies	46.0%	34.3%	-25.4%
Other state government agencies	17.2%	12.3%	-28.8%
Federal government agencies	7.0%	7.2%	3.7%
Hospitals	37.3%	46.6%	24.7%
Physician practices	20.2%	18.0%	-10.6%
Community health centers	12.4%	29.0%	134.6%
Health insurers	8.6%	10.6%	23.0%
Employers/businesses	16.9%	15.3%	-9.6%
Schools	30.7%	25.2%	-17.9%
Universities/colleges	15.6%	22.6%	44.7%
Faith-based organizations	19.2%	17.5%	-9.1%
Other nonprofit organizations	31.9%	32.5%	2.0%
Other	8.5%	5.2%	-38.4%

Bridging capital in population health networks: Trends in betweenness centrality

Changes in tie strength: 1998-2016

State	Local	Federale	X				Othe					
0	overnment	overnment	Wernment	pmsicians	Hospitals	CHC	Faithrbased	(NONH OFITS	AIT INSUIRIS	Employers	eronole	Universities
Local public health	-4.9%	4.6%	-3.4%	-13.0%	24.1%	130.6%	-12.8%	9.2%	22.0%	-13.8%	83.8%	47.4%
State government		-14.8%	2.3%	-19.8%	2.6%	81.8%	-26.5%	-11.2%	8.6%	-31.2%	81.0%	18.0%
Local government			5.6%	-11.0%	13.8%	117.8%	-16.5%	7.1%	17.2%	-16.6%	136.4%	51.3%
Federal government				-11.7%	2.4%	82.4%	-38.1%	2.4%	24.2%	-47.6%	126.7%	-0.8%
Physicians					-8.8%	57.9%	-21.2%	-12.8%	5.1%	-22.6%	122.1%	35.3%
Hospitals						142.4%	-10.1%	11.3%	29.5%	-10.4%	141.5%	55.4%
CHCs							-10.7%	115.8%	103.7%	-8.4%	411.0%	172.5%
Faith-based organizations								-12.4%	-8.8%	-8.0%	-7.7%	0.4%
Other nonprofits									17.6%	-9.2%	148.0%	53.8%
Health insurers										-4.6%	240.1%	57.7%
Employers											-15.7%	-6.7%
Schools												288.0%

Estimating network effects

Dependent variables:

- **Scope:** Percent of population activities implemented
- **Quality:** Perceived effectiveness of activities
- Resource use: Local public health spending; Area-level Medicare spending
- Health outcomes: premature mortality(<75), infant mortality, death rates for heart disease, diabetes, cancer, influenza</p>

Independent variables:

- Contribution scores: percent of activities contributed by each type of organization
- Network characteristics: network density, organizational degree centrality, betweenness centrality
- Composite network measure: comprehensive system capital

Estimating network effects Estimation:

- Log-transformed Generalized Linear Latent and Mixed Models
- Account for repeated measures and clustering of communities within states
- Instrumental variables address endogeneity of network structures

$$\begin{aligned} & \text{Ln}(\text{Network}_{z,ijt}) = \sum \alpha_z \text{Governance}_{ijt} + \\ & \beta_1 \text{Agency}_{ijt} + \beta_2 \text{Community}_{ijt} + \mu_j + \varphi_t + \varepsilon_{ijt} \\ & \text{Ln}(\text{Quantity/Quality/Cost}_{ijt}) = \sum \alpha_z \text{Ln}(\overset{\bullet}{\text{Network}}_z)_{ijt} + \\ & \beta_1 \text{Agency}_{ijt} + \beta_2 \text{Community}_{ijt} + \mu_j + \varphi_t + \varepsilon_{ijt} \end{aligned}$$

All models control for type of jurisdiction, population size and density, metropolitan area designation, income per capita, unemployment, racial composition, age distribution, educational attainment, and physician availability.

Health effects attributable to network structures

Fixed effects IV Estimates on Mortality

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects.

N=1019 community-years

Mays GP et al. Health Affairs 2016

Economic effects attributable to network structure

Impact of Comprehensive Systems on Medical Spending (Medicare)

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=1019 community-years. Vertical lines are 95% confidence intervals Mays GP et al. *Health Services Research* 2017

Equity effects attributable to network structure

Impact of Comprehensive Systems on Life Expectancy by Income

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=1019 community-years. Vertical lines are 95% confidence intervals Mays GP et al. forthcoming

Some conclusions

- Population health activities are produced through highly inter-organizational and multi-sectoral efforts (62% of contributions from outside governmental public health sector)
- Structure of population health networks varies widely and changes over time
- Structure appears closely related to performance & outcomes
- Network structure is endogenous ignoring this can lead to biased estimates of impact

Caveats: methodological trade-offs in systems science

In order to follow large numbers of community networks over long periods of time:

- Single respondent in each community
- Low-resolution measures of population health activities
- Networks defined by organization types/sectors, not individual organizations

Testing mechanisms for aligning medical, social, and public health systems

A Robert Wood Johnson Foundation program

Systems for Action

Systems and Services Research to Build a Culture of Health

Research Agenda Delivery and Financing System Innovations for a Culture of Health

September 2015

http://www.systemsforaction.org

For More Information

Systems for Action National Coordinating Center Systems and Services Research to Build a Culture of Health

Supported by The Robert Wood Johnson Foundation

Glen P. Mays, Ph.D., M.P.H. glen.mays@uky.edu @GlenMays

- Email: systemsforaction@uky.edu
- Web: www.systemsforaction.org
 www.publichealthsystems.org
 Journal: www.FrontiersinPHSSR.org
 Archive: works.bepress.com/glen_mays
 Blog: publichealtheconomics.org

Center for Public Health Systems and Services Research

Appendix: Ancillary Results

Determinants of system structure

Probit Estimates of Factors Influencing the Probability of Comprehensive System Capital

Variable	ginal Effect on Probability of System Capital				
Local board of health with decentralized governance	14.2%**				
Local board of health with centralized governance	9.7%**				
Centralized governance without local board of health	-4.5%**				
Decentralized governance without local board of health	Reference				
Population size (100,000s)	4.2%**				
Population density (1000s)	4.9%*				
Household income per capita (1000s)	2.5%**				

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=779 community-years **p<0.05 *p<0.10

Do other organizations complement or substitute for public health agency work?

Results from Multivariate GLLAMM Models

How does organizational centrality affect the scope of population health activities?

Results from Multivariate GLLAMM Models

